Clustering and Hybrid Genetic Algorithm based Intrusion Detection Strategy
نویسندگان
چکیده
Ad hoc networks face serious security threat due to its inherent weaknesses. Intrusion detection is crucial technology in protecting the security of Ad hoc networks. Recently, Intrusion Detection Systems (IDS) face open issues, such as how to make use of intrusion detection technologies to excavate normal/abnormal behaviors from a lot of initialized data and dig out invasion models later for intrusion detection automatically and effectively. In this paper, we propose an enhanced algorithm combined improved clustering algorithm with Hybrid Genetic Algorithm (HGA), called Enhanced Intrusion Detection Algorithm (EIDA) for intrusion detection in Ad hoc networks. Clustering Algorithm is used to divide the normal/anomalous data from network and system behaviors. Then HGA is used to dig out the invasion rules. Our EIDA is an unsupervised anomaly detection algorithm. The experiment result shows that it is extensible and not sensitive to the sequence of the input data sets. It has the capacity to deal with different types of data and detection rate and false positive rate of intrusion detection has been improved effectively.
منابع مشابه
A Hybrid Framework for Building an Efficient Incremental Intrusion Detection System
In this paper, a boosting-based incremental hybrid intrusion detection system is introduced. This system combines incremental misuse detection and incremental anomaly detection. We use boosting ensemble of weak classifiers to implement misuse intrusion detection system. It can identify new classes types of intrusions that do not exist in the training dataset for incremental misuse detection. As...
متن کاملIntrusion Detection based on a Novel Hybrid Learning Approach
Information security and Intrusion Detection System (IDS) plays a critical role in the Internet. IDS is an essential tool for detecting different kinds of attacks in a network and maintaining data integrity, confidentiality and system availability against possible threats. In this paper, a hybrid approach towards achieving high performance is proposed. In fact, the important goal of this paper ...
متن کاملA Hybrid Approach of Fuzzy C-mean Clustering and Genetic Algorithm (GA) to Improve Intrusion Detection Rate
This paper describes a hybrid approach of Fuzzy C-means clustering and Genetic Algorithm (GA) is proposed that provides better accuracy & increases the intrusion detection rate. This approach provides better accuracy of detection as compared to K-means and FCM Clustering. With this proposed approach intrusion detection rate is improved considerably.A brief overview of a hybrid approach of genet...
متن کاملA Parallel Genetic Algorithm Based Method for Feature Subset Selection in Intrusion Detection Systems
Intrusion detection systems are designed to provide security in computer networks, so that if the attacker crosses other security devices, they can detect and prevent the attack process. One of the most essential challenges in designing these systems is the so called curse of dimensionality. Therefore, in order to obtain satisfactory performance in these systems we have to take advantage of app...
متن کاملSecuring Cluster-heads in Wireless Sensor Networks by a Hybrid Intrusion Detection System Based on Data Mining
Cluster-based Wireless Sensor Network (CWSN) is a kind of WSNs that because of avoiding long distance communications, preserve the energy of nodes and so is attractive for related applications. The criticality of most applications of WSNs and also their unattended nature, makes sensor nodes often susceptible to many types of attacks. Based on this fact, it is clear that cluster heads (CHs) are ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013